半球壳准静态压缩下的变形行为研究

路国运 管文博 杨会伟 韩志军 雷建平

路国运, 管文博, 杨会伟, 韩志军, 雷建平. 半球壳准静态压缩下的变形行为研究[J]. 高压物理学报, 2014, 28(2): 137-144. doi: 10.11858/gywlxb.2014.02.002
引用本文: 路国运, 管文博, 杨会伟, 韩志军, 雷建平. 半球壳准静态压缩下的变形行为研究[J]. 高压物理学报, 2014, 28(2): 137-144. doi: 10.11858/gywlxb.2014.02.002
LU Guo-Yun, GUAN Wen-Bo, YANG Hui-Wei, HAN Zhi-Jun, LEI Jian-Ping. Deformation Mode of Hemispherical Shell under Static Load[J]. Chinese Journal of High Pressure Physics, 2014, 28(2): 137-144. doi: 10.11858/gywlxb.2014.02.002
Citation: LU Guo-Yun, GUAN Wen-Bo, YANG Hui-Wei, HAN Zhi-Jun, LEI Jian-Ping. Deformation Mode of Hemispherical Shell under Static Load[J]. Chinese Journal of High Pressure Physics, 2014, 28(2): 137-144. doi: 10.11858/gywlxb.2014.02.002

半球壳准静态压缩下的变形行为研究

doi: 10.11858/gywlxb.2014.02.002
基金项目: 国家自然科学基金(11072167, 11372094);山西省归国留学及择优项目(2013-14)
详细信息
    作者简介:

    路国运(1973—), 男,博士,副教授,主要从事冲击动力学研究.E-mail:luguoyun@tyut.edu.cn

  • 中图分类号: O347

Deformation Mode of Hemispherical Shell under Static Load

  • 摘要: 采用顶点及平板下压加载的加载方式对半球壳的准静态压缩进行了实验研究,获得了半球壳的变形模态及力-位移曲线。通过准静态压缩实验观察在不同加载方式下球壳变形模式随压缩深度的变化,发现半球壳出现了轴对称和非轴对称变形形式。利用ABAQUS有限元软件对球壳准静态压缩过程进行数值模拟,分析加载方式与球壳尺寸等对变形行为的影响。结果表明:球壳在压缩下的变形可分为加载点附近局部压平、轴对称凹陷以及形成非对称多边形3个阶段。其中,在压平向凹陷转变时,小截面平头加载的接触力-位移曲线产生了突跳现象,但在半球头与平板加载时未出现,且凹陷之后,半球头加载下接触力的增加速率减小,而平板加载下接触力的增加速率几乎保持不变。壳的径厚比越大,后期的变形程度越复杂;径厚比越小,由压平到凹陷转变时的临界荷载越大,球壳承载力越大。计算表明,在本研究范围内球壳凹陷前后接触力的大小以及增加速率只与厚度有关,而与半径的相关性则较小。

     

  • 图  实验装置及半球壳变形简化示意图

    Figure  1.  Experimental device and simplified schematic of hemispherical shell's deformation

    (a) Experimental device picture (b) Simplified schematic of hemispherical shell's deformation

    图  不同试件的最终变形图

    Figure  2.  Final compression diagram of different specimens

    图  不同厚度壳体、不同加载方式的载荷-位移实验曲线

    Figure  3.  The force-displacement curves of shell compressed by different loading styles or with different thickness

    (a) Different thickness (b) Different loading styles

    图  实验拉伸的应力-应变曲线

    Figure  4.  Stress-strain curve of shell

    图  模拟所得的变形模态以及实验与模拟的接触力-位移曲线

    Figure  5.  Deformation mode in simulation and force-deformation curve

    图  内空半球壳凹陷区翻转变形(镜像图)(R=80)

    Figure  6.  Inward dimpling reflection of single-layer empty spherical shell (R=80)

    图  平头加载下不同半径球壳的接触力-位移曲线

    Figure  7.  Contact force-displacement curves of different shell diameters under flat nosed loading

    图  平头加载下不同厚度球壳的接触力-位移曲线

    Figure  8.  Contact force-displacement curves of the different shell thickness under flat nosed loading

    图  平板加载下不同厚度球壳的荷载-位移曲线

    Figure  9.  Contact force-displacement curves of the different shell thickness under board loading

    图  10  半球头加载下不同厚度球壳的荷载-位移曲线

    Figure  10.  Contact force-displacement curves of the different shell thickness under ball-head loading

    图  11  不同加载方式下壳体的接触力-位移曲线

    Figure  11.  Contact force-displacement curves of the shell under different loading methods

    表  1  试件尺寸及结果

    Table  1.   Geometry and result of specimen

    Specimen No. Type of
    shell
    Type of
    indenter
    δ/
    (mm)
    R/
    (mm)
    $\frac{R}{\delta}$ Experimental results
    2h/(mm) a/(mm) Shape
    S1 Hemispherical Flat nose 1.2 50 41.67 30 31.1 Ring
    S2 Entire spherical Flat nose 0.8 47.5 59.38 30 37.2 4-lobes
    S3 Hemispherical Flat nose 1.5 60 40.00 30 27.7 Ring
    S4 Entire spherical Flat nose 0.8 55 68.75 30 42.7 4-lobes
    S5 Hemispherical Plates 1.2 50 41.67 46 48.4 Ring
    S6 Hemispherical Flat nose 0.7 50 71.43 30 36.7 3-lobes
    S7 Hemispherical Plates 0.7 50 71.43 50 49.1 5-lobes
    下载: 导出CSV

    表  2  半球壳的几何尺寸

    Table  2.   Geometric dimensions of the hemispherical shell

    Specimen No. R/(mm) δ/(mm) R/δ
    p-100-0.7 50 0.7 71.43
    p-100-1.0 50 1.0 50.00
    p-100-1.2 50 1.2 41.67
    p-120-1.2 60 1.2 50.00
    p-150-1.2 75 1.2 62.50
    b-100-0.7 50 0.7 71.43
    b-100-1.2 50 1.2 41.67
    q-100-0.7 50 0.7 71.43
    q-100-1.2 50 1.2 41.67
    Note:The meaning of specimen No. is loading type, external diameter, thickness of shell; p means blunt indenter; b means plate; q means hemispherical indenter.
    下载: 导出CSV
  • [1] Updike D P. On the large deformation of a rigid plastic spherical shell compressed by a rigid plate[J]. J Eng Ind, 1972, 94(3): 949-955. doi: 10.1115/1.3428276
    [2] Kinkead A N, Jennings A, Newell J, et al. Spherical shells in inelastic collision with a rigid wall-tentative analysis and recent quasi static testing[J]. J Strain Analys Eng Design, 1994, 29(1): 17-41. doi: 10.1243/03093247V291017
    [3] Kitching R, Houston R, Johnson W. A theoretical and experimental study of hemispherical shells subjected to axial loads between flat plates[J]. Int J Mech Sci, 1975, 17: 693-703. doi: 10.1016/0020-7403(75)90072-7
    [4] Gupta N K, Mohamed Sheriff N, Velmurugan R. Experimental and theoretical studies on buckling of thin spherical shells under axial loads[J]. Int J Mech Sci, 2008, 34: 422-432. http://www.sciencedirect.com/science/article/pii/S0020740307001749
    [5] Gupta N K, Eswara Prasad G L, Gupta S K. Axial compression of metallic spherical shells between rigid plates[J]. Thin-Walled Struct, 1999, 34(1): 21-41. doi: 10.1016/S0263-8231(98)00049-4
    [6] Gupta N K, Mohamed Sheriff N, Velmurugan R. Experimental and numerical investigations into collapse behaviour of thin spherical shells under drop hammer impact[J]. Int J Solids Struct, 2007, 44(10): 3136-3155. doi: 10.1016/j.ijsolstr.2006.09.014
    [7] Gupta P K, Gupta N K. A study of axial compression of metallic hemispherical domes[J]. J Mater Proces Tech, 2009, 209(4): 2175-2179. doi: 10.1016/j.jmatprotec.2008.05.004
    [8] Gupta N K, Venkatesh. Experimental and numerical studies of dynamic axial compression of thin walled spherical shells[J]. Int J Impact Eng, 2004, 30(8/9): 1225-240. http://www.sciencedirect.com/science/article/pii/S0734743X0400051X
    [9] El-sobky H, Singace A A. An experiment on elastically compressed frusta[J]. Thin-Walled Struct, 1999, 33: 231-244. doi: 10.1016/S0263-8231(98)00047-0
    [10] El-sobky H, Singace A. Influence of end of constraints on the collapse of axially impacted frusta[J]. Thin-Walled Struct, 2001, 39: 415-428. doi: 10.1016/S0263-8231(01)00008-8
    [11] Amiri S N, Rasheed H A. Plastic buckling of moderately thick hemispherical shells subjected to concentrated load on top[J]. Int J Eng Sci, 2012, 50: 151-165. doi: 10.1016/j.ijengsci.2011.08.006
    [12] Shariati M, Allahbakhsh H R. Numerical and experimental investigations on the buckling of steel semi-spherical shells under various loadings[J]. Thin-Walled Struct, 2010, 48: 620-628. doi: 10.1016/j.tws.2010.03.002
    [13] 宁建国, 杨桂通.刚粘塑性强化球星薄壳在撞击体作用下的大变形动力分析[J].固体力学学报, 1994, 15(2): 111-119. http://www.cqvip.com/QK/95077X/199402/1339734.html

    Ning J G, Yang G T. Dynamic analysis of large deformation for rigid-viscoplastic hardening spherical shells being impacted by a missile[J]. Acta Mechanica Solida Sinica, 1994, 15(2): 111-119. (in Chinese) http://www.cqvip.com/QK/95077X/199402/1339734.html
    [14] 宁建国.弹塑性球形薄壳在冲击载荷作用下的动力分析[J].固体力学学报, 1998, 19(4): 33-40. http://www.cnki.com.cn/Article/CJFDTotal-GTLX804.004.htm

    Ning J G. Dynamic analysis of elastic plastic thin spherical shells under impact[J]. Acta Mechanica Solida Sinica, 1998, 19(4): 33-40. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-GTLX804.004.htm
    [15] 马春生, 杜汇良, 张金换, 等.薄壁扁球壳在撞击载荷下的动态响应和吸能特性研究[J].振动与冲击, 2007, 26(1): 4-7, 155. http://d.wanfangdata.com.cn/Periodical/zdycj200701002

    Ma C S, Du H L, Zhang J H, et al. Study on dynamic response and energy absorbing characteristics of shallow spherical shells under impact load[J]. Journal of Vibration and Shock, 2007, 26(1): 4-7, 155. (in Chinese) http://d.wanfangdata.com.cn/Periodical/zdycj200701002
    [16] 张国权.冲击载荷作用下空壳和充液球壳结构动力响应[D].太原: 太原理工大学, 2011.

    Zhang G Q. Dynamic response of the hemispherical shell empty or filled by water subject to impact loading[D]. Taiyuan: Taiyuan University of Technology, 2011. (in Chinese)
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  6787
  • HTML全文浏览量:  2204
  • PDF下载量:  435
出版历程
  • 收稿日期:  2013-11-01
  • 修回日期:  2013-11-26

目录

    /

    返回文章
    返回