陶瓷纤维对普通硅酸盐混凝土的强韧化效应

苏灏扬 许金余 高志刚 李志武 杨坤

苏灏扬, 许金余, 高志刚, 李志武, 杨坤. 陶瓷纤维对普通硅酸盐混凝土的强韧化效应[J]. 高压物理学报, 2013, 27(1): 69-75. doi: 10.11858/gywlxb.2013.01.010
引用本文: 苏灏扬, 许金余, 高志刚, 李志武, 杨坤. 陶瓷纤维对普通硅酸盐混凝土的强韧化效应[J]. 高压物理学报, 2013, 27(1): 69-75. doi: 10.11858/gywlxb.2013.01.010
SU Hao-Yang, XU Jin-Yu, GAO Zhi-Gang, LI Zhi-Wu, YANG Kun. Strengthening and Toughening Effect of Ceramic Fiber on Plain Concrete[J]. Chinese Journal of High Pressure Physics, 2013, 27(1): 69-75. doi: 10.11858/gywlxb.2013.01.010
Citation: SU Hao-Yang, XU Jin-Yu, GAO Zhi-Gang, LI Zhi-Wu, YANG Kun. Strengthening and Toughening Effect of Ceramic Fiber on Plain Concrete[J]. Chinese Journal of High Pressure Physics, 2013, 27(1): 69-75. doi: 10.11858/gywlxb.2013.01.010

陶瓷纤维对普通硅酸盐混凝土的强韧化效应

doi: 10.11858/gywlxb.2013.01.010
详细信息
    通讯作者:

    苏灏扬 E-mail:suhaoyang117@126.com

Strengthening and Toughening Effect of Ceramic Fiber on Plain Concrete

  • 摘要: 采用液压试验机和100 mm分离式霍普金森压杆实验装置,研究了体积分数为0.1%、0.2%和0.3%的陶瓷纤维混凝土的准静态和动态力学性能,分析了陶瓷纤维的增强机理,并将其与相同纤维体积分数的碳纤维混凝土进行对比。结果表明:陶瓷纤维改善了普通硅酸盐混凝土的准静态力学性能;纤维体积分数为0.3%时,抗压强度提高15.0%,劈裂抗拉强度提高8.5%,抗折强度提高12.7%。冲击荷载作用下,陶瓷纤维混凝土的动态抗压强度和比能量吸收随平均应变率的增加近似线性增长;体积分数为0.2%时,陶瓷纤维的增强、增韧效果最佳。陶瓷纤维对普通硅酸盐混凝土的增强、增韧效果总体上优于碳纤维。

     

  • Jiao C J, Jiang G P, Gao L. Experimental research on the dynamic split properties of steel fiber reinforced concrete [J]. Acta Armamentarii, 2010, 31(4): 469-472. (in Chinese)
    焦楚杰, 蒋国平, 高乐. 钢纤维混凝土动态劈裂实验研究 [J]. 兵工学报, 2010, 31(4): 469-472.
    Jiang G P, Huan S, Jiao C J, et al. Dynamic performances of polypropylene fiber reinforced concrete based on SHPB experiment [J]. Journal of Sichuan University (Engineering Science Edition), 2009, 41(5): 82-86. (in Chinese)
    蒋国平, 浣石, 焦楚杰, 等. 基于SHPB试验的聚丙烯纤维增强混凝土动态力学性能研究 [J]. 四川大学学报(工程科学版), 2009, 41(5): 82-86.
    Li W M, Xu J Y, Shen L J, et al. Dynamic mechanical properties of basalt fiber reinforced concrete using a split Hopkinson pressure bar [J]. Acta Material Compositae Sinica, 2008, 25(2): 135-142. (in Chinese)
    李为民, 许金余, 沈刘军, 等. 玄武岩纤维混凝土的动态力学性能 [J]. 复合材料学报, 2008, 25(2): 135-142.
    Alkoy S, Yanik H, Yapar B. Fabrication of lead zirconate titanate ceramic fibers by gelation of sodium alginate [J]. Ceram Int, 2007, 33(3): 389-394.
    Wei C C, Chen O Y, Liu Y, et al. Ceramic asymmetric hollow fibre membranes-One step fabrication process [J]. J Membrane Sci, 2008, 320(1/2): 191-197.
    Chen J X. Synthesis and characterization of organosilicon polymers for SiC-based ceramic fibers [D]. Xiamen: Xiamen University, 2007. (in Chinese)
    陈江溪. 碳化硅基陶瓷纤维用有机硅高分子的合成与表征 [D]. 厦门: 厦门大学, 2007.
    He R A. Synthesis of porous SiC ceramic fibers from polymer precursors [D]. Changsha: National University of Defense Technology, 2008. (in Chinese)
    赫荣安. 先驱体法制备SiC陶瓷多孔吸附纤维的研究 [D]. 长沙: 国防科技大学, 2008.
    Zeng L K, Hu D L. The study on the dispersive property of ceramic fiber and fiber glomeration [J]. Journal of Ceramics, 2008, 29(4): 324-328. (in Chinese)
    曾令可, 胡动力. 陶瓷纤维分散性能的研究 [J]. 陶瓷学报, 2008, 29(4): 324-328.
    Ma Y P, Tan M H. Research on mechanical properties and durability of ceramic fibre reinforced cement composites [J]. Journal of the Chinese Ceramic Society, 2000, 28(2): 105-110. (in Chinese)
    马一平, 谈慕华. 陶瓷纤维水泥基复合材料力学性能及耐久性研究 [J]. 硅酸盐学报, 2000, 28(2): 105-110.
    Wang L L. Foundation of Stress Waves [M]. Beijing: National Defence Industry Press, 2005. (in Chinese)
    王礼立. 应力波基础 [M]. 北京: 国防工业出版社, 2005.
    Yu T X, Lu G X. Energy Absorption of Structures and Materials [M]. Translated by Hua Y L. Beijing: Chemical Industry Press, 2005. (in Chinese)
    余同希, 卢国兴. 材料与结构的能量吸收: 耐撞性包装安全防护 [M]. 华云龙, 译. 北京: 化学工业出版社, 2005.
    Li W M, Xu J Y. Strengthening and toughening in basalt fiber-reinforced concrete [J]. Journal of the Chinese Ceramic Society, 2008, 36(4): 476-481. (in Chinese)
    李为民, 许金余. 玄武岩纤维对混凝土的增强和增韧效应 [J]. 硅酸盐学报, 2008, 36(4): 476-481.
  • 加载中
计量
  • 文章访问数:  7185
  • HTML全文浏览量:  316
  • PDF下载量:  411
出版历程
  • 收稿日期:  2011-12-12
  • 修回日期:  2012-03-12
  • 发布日期:  2013-02-15

目录

    /

    返回文章
    返回